Efficient Precision and Recall for Assessing Generative Models using Hubness-aware Sampling

Motivation & Contribution

- We propose efficient precision and recall (eP&R) metrics for assessing generative models, which give almost identical results as the original P&R [1] but consume much less time and space. Theoretically, our eP&R run in $O(mn \log n)$ time and consume O(mn) space (m is the number of of hubs samples and m < n), which are much more efficient than the original P&R metrics that run in $O(n^2 \log n)$ time and consumes $O(n^2)$ space.
- We identify two important types of redundancies in the original P&R metrics and uncover that both of them can be effectively removed by hubness-aware sampling [2, 3]. In addition, the insensitivity of hubness-aware sampling to exact k-nearest neighbor (k-NN) results allows for further efficiency improvement by using approximate k-NN methods.
- Extensive experimental results demonstrate the effectiveness of our eP&R metrics.

Preliminaries

The precision and recall (P&R) metrics for assessing generative models [1] are

$$\operatorname{recision}(\mathbf{\Phi}_r, \mathbf{\Phi}_g) = \frac{1}{|\mathbf{\Phi}_g|} \sum_{\phi_g \in \mathbf{\Phi}_g} f(\phi_g, \mathbf{\Phi}_r),$$
$$\operatorname{recall}(\mathbf{\Phi}_r, \mathbf{\Phi}_g) = \frac{1}{|\mathbf{\Phi}_r|} \sum_{\phi_r \in \mathbf{\Phi}_r} f(\phi_r, \mathbf{\Phi}_g)$$

where $\Phi_{
m g}$ and $\Phi_{
m r}$ are the sets of feature vectors corresponding to the generated and real image samples, respectively; $|\Phi|$ denotes the number of samples in set Φ and $|\Phi_q| = |\Phi_r|$; $f(\phi, \Phi)$ is a binary function determining whether a sample ϕ lies on a manifold represented by Φ :

$$f(\phi, \mathbf{\Phi}) = \begin{cases} 1, \text{ if } \|\phi - \phi'\|_2 \leq \|\phi' - \operatorname{NN}_k(\phi', \mathbf{\Phi})\|_2 \text{ for at least one} \\ 0, \text{ otherwise,} \end{cases}$$

where $NN_k(\phi', \Phi)$ denotes the kth nearest neighbour of ϕ' in Φ .

D

The Redundancies in Precision and Recall

Observation 1 [Redundancy in Ratio Estimation] As Eq. 2 shows, the P&R metrics are essentially ratios of the number of samples in a set Φ that lie on a given manifold to the number of all samples in Φ . Thus, we can obtain similar P&R ratios by using representative samples of Φ with the rest as redundant.

Observation 2 [Redundancy in Inside/Outside Manifold Identification] As shown in Eq. 3, $f(\phi, \Phi)$ is 1 as long as ϕ is within the k-NN hypersphere of at least one sample $\phi' \in \Phi$. This means that we only need to find one valid ϕ' for each ϕ and all the other ϕ' s are redundant.

Redundancy Reduction using Hubness-aware Sampling

(a) All 70k images in the FFHQ dataset

(b) 70k images generated by StyleGAN2

Figure 1. Samples with similar hubness values are effective representative samples in terms of P&R ratio calculation. (a) Left: Histogram of sample occurrences vs. hubness value. Right: Pie chart showing that all three groups share similar ratios of samples identified as 1 vs. 0 using Eq. 3 for recall calculation. (b) The same experiment as (a) but on StyleGAN-generated samples for precision calculation.

Yuanbang Liang¹

¹School of Computer Science and Informatics, Cardiff University

Redundancy Reduction using Hubness-aware Sampling (Cont'd)

 $\phi' \in \mathbf{\Phi}$ (3)

(a) All 70k images in the FFHQ dataset

Figure 2. Most samples ϕ with $f(\phi, \Phi) = 1$ (Eq. 3) are included in the k-NN hypersphere of at

least one hubs sample (t = 3) of the other distribution. (a) Left: Histogram of sample occurrences (log scale) vs. the times a sample is included in the k-NN hypersphere of a sample of the other distribution, *i.e.*, valid ϕ' ; the illustration can be checked in Fig. 3. Right: Pie chart showing the ratio of samples within the k-NN hypersphere of hubness vs. non-hubness samples from the other distribution, to the total number of samples ϕ with $f(\phi, \Phi) = 1$ in each group.

Rationale

- For Observation 1 and Fig. 1, we find that samples with similar hubness values are effective representative samples of set Φ in terms of P&R ratios as they share similar ratios of samples identified as 1 vs. 0 by Eq. 3, indicating that we can use a small number of hubs samples to approximate P&R;
- for Observation 2 and Fig. 2, we find that most ϕ with $f(\phi, \Phi) = 1$ (Eq. 3) are included in the k-NN hypersphere of at least one ϕ' with high hubness values, *i.e.*, hubs samples, indicating that we can obtain similar outputs of Eq. 3 using a small number of hubs samples.

Thus, our efficient P&R metrics (eP&R) can be defined as: precision^{hub}(Φ_r, Φ_g) = $\frac{1}{|\Phi_g^{hub}|}$ $\operatorname{recall}^{hub}(\boldsymbol{\Phi}_r, \boldsymbol{\Phi}_g) = \frac{\mathbf{I}}{|\boldsymbol{\Phi}_r^{hub}|}$

where Φ_a^{hub} and Φ_r^{hub} are the sets of feature vectors with hubness values m > t corresponding to the generated and real image samples, respectively; t is a threshold hyper-parameter.

Illustration for valid ϕ'

Figure 3. Illustration of valid ϕ' . ϕ is represented by a yellow cube and $\phi' \in \Phi$ set are represented by red rhombuses.

Jing Wu¹ Yu-Kun Lai¹ Yipeng Qin¹

(b) 70k images generated by StyleGAN2

$$f(\phi_g^{hub}, \mathbf{\Phi}_r^{hub}) \tag{4}$$

$$\int f(\phi_r^{hub}, \Phi_g^{hub})$$
(5)

As Fig. 3 shows, by "the times a sample is included in the k-NN hypersphere of a sample of the other distribution, *i.e.*, valid ϕ' ", we count the number of times ϕ (yellow cube) is within the k-NN hypersphere of $\phi' \in \Phi$ (red rhombuses)

Error Analysis (Partial Results)

Table 1. Approximation errors compared to the original Precision and Recall (P&R) metrics.

	FFI	HQ	LSUN	N-Car	LSUN-Church	
	Precision	Recall	Precision	Recall	Precision	Recall
eP&R	0.719±0.002	0.501±0.002	0.732±0.001	0.422±0.002	0.608±0.002	0.392±0.003
B.L.	0.716±0.001	0.493 ± 0.001	0.725±0.001	0.426 ± 0.001	0.592 ± 0.001	0.389 ± 0.002
Error(%)	0.4%	1.6%	0.9%	0.9%	1.9%	0.7%

Computational Complexity Analysis (Partial Results)

B.L.: the original P&R metrics as the baseline; eP&R: our efficient P&R metrics; DM: Distance Matrix; A. hubs: the approximate hubness value; $m_x = \max\{m_r, m_q\}$ and $|\Phi_q| = m_q, |\Phi_r| = m_r$.

Drofling	B.L.		Drafling	eP&R		
Proming	Time Memory		Proming	Time	Memory	
			Subspace ($\mathbf{\Phi}_r, \mathbf{\Phi}_g$)	$O(\log n)$	O(n)	
DMs ($oldsymbol{\Phi}_r,oldsymbol{\Phi}_g)$	$O(n^2)$	$O(n^2)$	A. hubs ($\mathbf{\Phi}_r^{hub}$, $\mathbf{\Phi}_q^{hub}$)	$O(m_x)$	_	
			eDMs	$O(m_x n)$	$O(m_x n)$	
Sorting	$O(n^2 \log n)$	_	eSorting	$O(m_x n \log n)$	_	
Radii	O(n)	O(n)	Radii	$O(m_x)$	$O(m_x)$	
$DM \left(\mathbf{\Phi}_{r} \leftrightarrow \mathbf{\Phi}_{g} ight)$	$O(n^2)$	$O(n^2)$	$ eDM (\mathbf{\Phi}_r^{hub} \leftrightarrow \mathbf{\Phi}_q^{hub}) $	$O(m_r m_g)$	$O(m_r m_g)$	
P&R	$O(n^2)$	_	eP&R	$O(m_x^2)$	$O(m_x^{ar 2})$	
Total/Peak	$O(n^2 \log n)$	$O(n^2)$	Total/Peak	$O(m_x n \log n)$	$O(m_x n)$	

Theoretically, the proposed eP&R metrics run in $\max(O(m_r n \log n), O(m_q n \log n))$ time and consumes $\max(O(m_r n), O(m_q n))$ space while the original P&R metrics run in $O(n^2 \log n)$ time and consumes $O(n^2)$ space. Since $m_r < n, m_q < n$, the proposed eP&R metrics are far more efficient than the original P&R metrics.

Table 2. Time and space consumption of our eP&R metrics V.S the original P&R metrics [1] on the FFHQ. Time (S): serial implementation. Time (P): parallel implementation using CUDA.

Drofling	B.L.			Drofling	eP&R		
Proming	Time (S)	Time (P)	Memory	Proming	Time (S)	Time (P)	Memory
	160s	66s	15.84 GB	Subspace ($oldsymbol{\Phi}_r, oldsymbol{\Phi}_g$)	4s	Зs	3.01 GB
DMs ($oldsymbol{\Phi}_r,oldsymbol{\Phi}_g)$				A. hubs ($oldsymbol{\Phi}_r^{hub}$, $oldsymbol{\Phi}_q^{hub}$)	2s	1.2s	-
				eDMs	72s	32s	11.23 GB
Sorting	104s	22s	_	eSorting	50s	12s	_
Radii	2.2s	2.2s	0.58 GB	Radii	1.7s	1.7s	0.30 GB
$DM \left(\mathbf{\Phi}_{r} \leftrightarrow \mathbf{\Phi}_{g} \right)$	85s	34s	19.24 GB	$ $ eDM ($\mathbf{\Phi}_{r}^{hub} \leftrightarrow \mathbf{\Phi}_{q}^{hub}$)	18s	9s	8.74 GB
P&R	48s	28s	-	eP&R	11s	6s	-
Total/Peak	399s	144s	19.90 GB	Total/Peak	165s	75s	14.24 GB

Advances in Neural Information Processing Systems, vol. 32, 2019.

[2] M. Radovanovic, A. Nanopoulos, and M. Ivanovic, "Hubs in space: Popular nearest neighbors in high-dimensional data," Journal of Machine Learning Research, vol. 11, no. sept, pp. 2487–2531, 2010.

[3] Y. Liang, J. Wu, Y.-K. Lai, and Y. Qin, "Exploring and exploiting hubness priors for high-quality GAN latent sampling," in Proceedings of the 39th International Conference on Machine Learning, vol. 162 of Proceedings of Machine Learning Research, pp. 13271–13284, PMLR, 17-23 Jul 2022.

References

[1] T. Kynkäänniemi, T. Karras, S. Laine, J. Lehtinen, and T. Aila, "Improved precision and recall metric for assessing generative models,"