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= \WWe propose efficient precision and recall (eP&R) metrics for assessing generative models, which i . Table 1. Approximation errors compared to the original Precision and Recall (P&R) metrics.
give almost identical results as the original P&R [1] but consume much less time and space. . . Sl g 92.3% #1€018,+2)
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that run in O(n”log n) time and consumes O(n”) space. S T 99.9% eP&R  10.719£0.002 0.501+0.00210.7324+0.001 0.42240.002 1 0.608+£0.002 0.392+0.003
= We identify two important types of redundancies in the original P&R metrics and uncover that number of valid ¢’ 8.4% number of valid ¢* 7.7% B.L. 0.7164+0.001 0.4934+0.001 0.725+0.001 0.426+0.001 0.5924+0.001 0.3894+0.002
both of them can be effectively removed by hubness-aware sampling |2, 3]. In addition, the (a) All 70k images in the FFHQ dataset (b) 70k images generated by StyleGAN2 Error(%) 0.4% 1.6% 0.9% 0.9% 1.9% 0.7%
msensmmy.of hubness—avvare Samplmg to exac.t k-nearest neighbor (k-NN) results allows for Figure 2. Most samples ¢ with (¢, ®) = 1 (Eq. 3) are included in the k-NN hypersphere of at
further efficiency improvement by using approximate k-NN methods. least one hubs sample (¢ = 3) of the other distribution. (a) Left: Histogram of sample occurrences C tati LC lexitv Analvsis (Partial R Lts)
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Extensive experimental results demonstrate the effectiveness of our eP&R metrics. (log scale) vs. the times a sample is included in the k-NN hypersphere of a sample of the other P P y y
o distribution, i.e., valid ¢'; the illustration can be checked in Fig. 3. Right: Pie chart showing the B.L.: the original P&R metrics as the baseline; eP&R: our efficient P&R metrics; DM: Distance
Preliminaries ratio of samples within the &-NN hypersphere of hubness vs. non-hubness samples from the Matrix; A. hubs: the approximate hubness value; m, = max{m;, my} and |®4| = mg, |®,| =
- . . . other distribution, to the total number of samples ¢ with f(¢, ®) = 1 in each group.
The precision and recall (P&R) metrics for assessing generative models [1] are defined as: sl “P&R
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where ®¢ and ®, are the sets of feature vectors corresponding to the generated and real image can use a small number of hubs samples to approximate P&R; Radii O(n ) O(n) Radii O(mz)  O(my)
samples, respectively; |@| denotes the number of samples in set @ and |®g| = |®r|; f(¢, ®) is 3 - for Observation 2 and Fig. 2, we find that most ¢ with f(¢, ®) =1 (Eq. 3) are DM (@ + @) O(n*)  O(n?) eDM (@0 ¢ @10 O(mymy) O(mymy)
binary function determining whether a sample ¢ lies on a manifold represented by ®: : : : : 2 _ 2 2
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where NN,.(¢/, ®) denotes the kth nearest neighbour of ¢/ in ®. a small number of hubs samples. Theoretically, the proposed eP&R metrics run in max(O(mynlogn), O(mgn log n)) time and con-
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Observation 1 [Redundancy in Ratio Estimation] As Eq. 2 shows, the P&R metrics are essen- ‘ phube b Table 2. Time and space consumption of our eP&R metrics V.5 the original P&R metrics [1] on
fHally ratios of the number of samples in a set ® that lie on a given manifold to the number of - hub_ gy the FFHQ. Time (S): serial implementation. Time (P): parallel implementation using CUDA.
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Observation 2 [Redundancy in Inside/Outside Manifold Identification] As shown in Eq. 3, where @710 and @'Y are the sets of feature vectors with hubness values m > ¢ corresponding Subspace (@, ®) 4s 3s 3.01GB
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