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Motivation & Contribution

We propose efficient precision and recall (eP&R) metrics for assessing generative models, which

give almost identical results as the original P&R [1] but consume much less time and space.

Theoretically, our eP&R run in O(mn log n) time and consume O(mn) space (m is the number

of of hubs samples and m < n), which are much more efficient than the original P&R metrics
that run in O(n2 log n) time and consumes O(n2) space.
We identify two important types of redundancies in the original P&R metrics and uncover that

both of them can be effectively removed by hubness-aware sampling [2, 3]. In addition, the

insensitivity of hubness-aware sampling to exact k-nearest neighbor (k-NN) results allows for
further efficiency improvement by using approximate k-NN methods.

Extensive experimental results demonstrate the effectiveness of our eP&R metrics.

Preliminaries

The precision and recall (P&R) metrics for assessing generative models [1] are defined as:

precision(Φr, Φg) = 1
|Φg|

∑
φg∈Φg

f (φg, Φr), (1)

recall(Φr, Φg) = 1
|Φr|

∑
φr∈Φr

f (φr, Φg) (2)

where Φg and Φr are the sets of feature vectors corresponding to the generated and real image
samples, respectively; |Φ| denotes the number of samples in set Φ and |Φg| = |Φr|; f (φ, Φ) is a
binary function determining whether a sample φ lies on a manifold represented by Φ:

f (φ, Φ) =
{

1, if ‖φ − φ′‖2 ≤ ‖φ′ − NNk(φ′, Φ)‖2 for at least one φ′ ∈ Φ
0, otherwise,

(3)

where NNk(φ′, Φ) denotes the kth nearest neighbour of φ′ in Φ.

The Redundancies in Precision and Recall

Observation 1 [Redundancy in Ratio Estimation] As Eq. 2 shows, the P&R metrics are essen-

tially ratios of the number of samples in a set Φ that lie on a given manifold to the number of

all samples in Φ. Thus, we can obtain similar P&R ratios by using representative samples of Φ
with the rest as redundant.

Observation 2 [Redundancy in Inside/Outside Manifold Identification] As shown in Eq. 3,

f (φ, Φ) is 1 as long as φ is within the k-NN hypersphere of at least one sample φ′ ∈ Φ. This
means that we only need to find one valid φ′ for each φ and all the other φ′s are redundant.

Redundancy Reduction using Hubness-aware Sampling

0 20 40 60 80 100 120
Hubness Value

100
101
102
103
104

lo
g 

of
 O

cc
ur

en
ce

67.0%

33.0%

68.0%
32.0%

66.3%

33.7%

Hub. Value:[1,13)
Hub. Value:[13,24)
Hub. Value:[24,+ )

B.S. is 1
B.S. is 0

(a) All 70k images in the FFHQ dataset
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(b) 70k images generated by StyleGAN2

Figure 1. Samples with similar hubness values are effective representative samples in terms of

P&R ratio calculation. (a) Left: Histogram of sample occurrences vs. hubness value. Right: Pie

chart showing that all three groups share similar ratios of samples identified as 1 vs. 0 using

Eq. 3 for recall calculation. (b) The same experiment as (a) but on StyleGAN-generated samples

for precision calculation.

Redundancy Reduction using Hubness-aware Sampling (Cont’d)
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(a) All 70k images in the FFHQ dataset
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(b) 70k images generated by StyleGAN2

Figure 2. Most samples φ with f (φ, Φ) = 1 (Eq. 3) are included in the k-NN hypersphere of at
least one hubs sample (t = 3) of the other distribution. (a) Left: Histogram of sample occurrences
(log scale) vs. the times a sample is included in the k-NN hypersphere of a sample of the other
distribution, i.e., valid φ′; the illustration can be checked in Fig. 3. Right: Pie chart showing the
ratio of samples within the k-NN hypersphere of hubness vs. non-hubness samples from the
other distribution, to the total number of samples φ with f (φ, Φ) = 1 in each group.

Rationale

For Observation 1 and Fig. 1, we find that samples with similar hubness values

are effective representative samples of set Φ in terms of P&R ratios as they

share similar ratios of samples identified as 1 vs. 0 by Eq. 3, indicating that we

can use a small number of hubs samples to approximate P&R;

for Observation 2 and Fig. 2, we find that most φ with f (φ, Φ) = 1 (Eq. 3) are
included in the k-NN hypersphere of at least one φ′ with high hubness values,

i.e., hubs samples, indicating that we can obtain similar outputs of Eq. 3 using

a small number of hubs samples.

Thus, our efficient P&R metrics (eP&R) can be defined as:

precisionhub(Φr, Φg) = 1
|Φhub

g |

∑
φhub

g ∈Φhub
g

f (φhub
g , Φhub

r ) (4)

recallhub(Φr, Φg) = 1
|Φhub

r |

∑
φhub

r ∈Φhub
r

f (φhub
r , Φhub

g ) (5)

where Φhub
g and Φhub

r are the sets of feature vectors with hubness values m > t corresponding
to the generated and real image samples, respectively; t is a threshold hyper-parameter.

Illustration for valid φ′

  

Figure 3. Illustration of valid φ′. φ is represented by a yellow
cube and φ′ ∈ Φ set are represented by red rhombuses.

As Fig. 3 shows, by “the times a

sample is included in the k-NN
hypersphere of a sample of the

other distribution, i.e., valid φ′”,
we count the number of times φ
(yellow cube) is within the k-NN
hypersphere ofφ′ ∈ Φ (red rhom-
buses).

Error Analysis (Partial Results)

Table 1. Approximation errors compared to the original Precision and Recall (P&R) metrics.

FFHQ LSUN-Car LSUN-Church

Precision Recall Precision Recall Precision Recall

eP&R 0.719±0.002 0.501±0.002 0.732±0.001 0.422±0.002 0.608±0.002 0.392±0.003
B.L. 0.716±0.001 0.493±0.001 0.725±0.001 0.426±0.001 0.592±0.001 0.389±0.002
Error(%) 0.4% 1.6% 0.9% 0.9% 1.9% 0.7%

Computational Complexity Analysis (Partial Results)

B.L.: the original P&R metrics as the baseline; eP&R: our efficient P&R metrics; DM: Distance

Matrix; A. hubs: the approximate hubness value; mx = max{mr, mg} and |Φg| = mg, |Φr| = mr.

Profiling
B.L.

Profiling
eP&R

Time Memory Time Memory

DMs (Φr, Φg)

Subspace (Φr, Φg) O(logn) O(n)
O(n2) O(n2) A. hubs (Φhub

r , Φhub
g ) O(mx) –

eDMs O(mxn) O(mxn)
Sorting O(n2 log n) – eSorting O(mxn log n) –

Radii O(n) O(n) Radii O(mx) O(mx)
DM (Φr ↔ Φg) O(n2) O(n2) eDM (Φhub

r ↔ Φhub
g ) O(mrmg) O(mrmg)

P&R O(n2) – eP&R O(m2
x) O(m2

x)
Total/Peak O(n2 log n) O(n2) Total/Peak O(mxn log n) O(mxn)

Theoretically, the proposed eP&R metrics run in max(O(mrn log n), O(mgn log n)) time and con-
sumes max(O(mrn), O(mgn)) space while the original P&R metrics run in O(n2 log n) time and
consumes O(n2) space. Since mr < n, mg < n, the proposed eP&R metrics are far more efficient
than the original P&R metrics.

Table 2. Time and space consumption of our eP&R metrics V.S the original P&R metrics [1] on

the FFHQ. Time (S): serial implementation. Time (P): parallel implementation using CUDA.

Profiling
B.L.

Profiling
eP&R

Time (S) Time (P) Memory Time (S) Time (P) Memory

DMs (Φr, Φg)

Subspace (Φr, Φg) 4s 3s 3.01 GB

160s 66s 15.84 GB A. hubs (Φhub
r , Φhub

g ) 2s 1.2s –

eDMs 72s 32s 11.23 GB

Sorting 104s 22s – eSorting 50s 12s –

Radii 2.2s 2.2s 0.58 GB Radii 1.7s 1.7s 0.30 GB

DM (Φr ↔ Φg) 85s 34s 19.24 GB eDM (Φhub
r ↔ Φhub

g ) 18s 9s 8.74 GB

P&R 48s 28s – eP&R 11s 6s –

Total/Peak 399s 144s 19.90 GB Total/Peak 165s 75s 14.24 GB
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